

Mastering Number- What next?

How can we continue the positive impact of the mastering number programme in to KS2?

- Emma Parr
- Maths lead, LKS2 lead and former KS1 Lead at Cholsey Primary School
- Assistant Primary Maths Hub Lead and Mastery Specialist

Guidance for SLT at Mastering Number Cohort 1 schools, looking ahead to 2022/23

Vision

Having seen what Mastering Number can do, what is your vision for the future?

- It will become an embedded element of the curriculum and written into policies, etc.
- · All staff, including KS2, will understand its role and purpose.

Debbie Morgan

Year 2 Mastering Number

Week	Strand	Content				
17	Number facts and arithmetic	Calculate across the 10 boundary: add 3 numbers with a total > 10 by				
		identifying bonds of 10				
18	Number facts and arithmetic	Calculate across the 10 boundary: bridging through 10 to add				
19	Number facts and arithmetic	Calculate across the 10 boundary: bridging through 10 to add				
20	Number facts and arithmetic	Calculate across the 10 boundary: bridging through 10 to subtract				
21	Number facts and arithmetic Calculate across the 10 boundary: bridging through 10 to subt					

	1						
101	AS	1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	2AS-1 Add and subtract across 10.	3AS-1 Calculate complements to 100.			
		1AS-2 Reinterpret equations containing addition (+), subtractio equals (=) symbols, and relate additive expression equations to real-life contexts.	2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form "How many more?".	3AS-2 Add and subtract up to three-digit numbers using columnar methods.			
	NF	1NF-1 Develop fluency in addition and subtraction facts within 10.	2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice. →	3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.			

Curriculum Prioritisation Materials

ADDING AND SUBTRACTING ACROSS 10

Unit 1 – 2 weeks

Autumn 1 Autumn 2 Spring 1 Spring 2 Sun
Unit 1 2 3 4 5 6 7

Learning outcomes

Title

1	Pupils add 3 addends
2	Pupils use a 'First Then Now" story to add 3 addends
3	Pupils explain that addends can be added in any order
4	Pupils add 3 addends efficiently
5	Pupils add 3 addends efficiently by finding two addends that total 10
6	Pupils add two numbers that bridge through 10
7	Pupils subtract two numbers that bridge through 10

Consistency of language and gesture

+	0	-	2	3	4	5	6	7	8	9	10	
0	0 + 0	0+1	0 + 2	0 + 3	0 + 4	0 + 5	0 + 6	0 + 7	0 + 8	0 + 9	0 + 10	
I	1+0	1+1	1 + 2	l + 3	1 + 4	1 + 5	l + 6	1 + 7	l + 8	1 + 9	1 + 10	
2	2 + 0	2 + 1	2 + 2	2 + 3	2 + 4	2 + 5	2 + 6	2 + 7	2 + 8	2 + 9	2 + 10	
3	3 + 0	3 + 1	3 + 2	3 + 3	3 + 4	3 + 5	3 + 6	3 + 7	3 + 8	3 + 9	3 + 10	
4	4+0	4+1	4 + 2	4 + 3	4 + 4	4 + 5	4 + 6	4 + 7	4 + 8	4 + 9	4 + 10	
5	5 + 0	5 + 1	5 + 2	5 + 3	5 + 4	5 + 5	5 + 6	5 + 7	5 + 8	5 + 9	5 + 10	
6	6 + 0	6+1	6 + 2	6 + 3	6 + 4	6 + 5	6 + 6	6 + 7	6 + 8	6 + 9	6 + 10	
7	7 + 0	7 + I	7 + 2	7 + 3	7 + 4	7 + 5	7 + 6	7 + 7	7 + 8	7 + 9	7 + 10	
8	8 + 0	8 + I	8 + 2	8 + 3	8 + 4	8 + 5	8 + 6	8 + 7	8 + 8	8 + 9	8 + 10	
9	9+0	9+1	9 + 2	9 + 3	9 + 4	9 + 5	9+6	9+7	9 + 8	9+9	9 + 10	
10	10 + 0	10 + 1	10 + 2	10 + 3	10 + 4	10 + 5	10 + 6	10 + 7	10 + 8	10 + 9	10 + 10	

When one of the addends is **0**, the sum is equal to the other addend. is made of and and double is

When **adding 1**, the sum is the next number on the number line.

When adding 2 to an even number, I get the next even number.

When adding 2 to an odd number, I get the next odd number.

Double the smaller number and add 1 or double the bigger number

and subtract 1.

Number bonds to 10

Bridging- ten and then

When one of the addends is 10 the other addend replaces the 0.

- The DfE guidance, alongside development of deep conceptual understanding, places significant emphasis on procedural and factual fluency.
- Why is this important?

In teaching procedural and factual knowledge, ensure that students get to **automaticity**. Explain to students that automaticity with procedures and facts is important because it frees their minds to think about concepts. (Willingham 2009 p19)

Multiplicative and Additive facts

Learning additive facts is different from learning multiplicative facts and happens in a different part of the brain.

Multiplicative facts are stored in our verbal memory; saying (and hearing) the sound pattern of the phrase (e.g. seven threes are twenty one) is important.

Additive facts are built up in a different part of the brain and rely initially on thinking about relationships.

(Piazza and Dehaene)

Additive Facts 3 Stages

- Phase one counting on in ones
- Phase two reasoning with connected facts
 (6+5=5+5+1=11)
- Phase 3 instant recall of facts (6 + 5 = 11)
 (Baroody)

Phase 2 reflects 'thinking about relationships'. This is a very important stage

9 needs 1 to make ten, and then....

Step 4a

What did you notice?

 Please take some time to discuss what you have seen and formulate any questions.

Thank you for having me!

Emma Parr

@ecwparr
@bbomathshub

