Thinking Deeply about Primary Mathematics

kieran.mackle@completemaths.com
@Kieran_M_Ed

High Quality Textbooks

Misconceptions

Reasoning

Models and Images

Storytelling

Bar Modelling

Instruction

Planning

Language

Reading for PD

Cindy has 55 balloons. Kate has 44 balloons. How many balloons do they have altogether?

Cindy has 55 balloons. Kate gives her 44 balloons. How many balloons does Cindy have now?

The Kölntriangle is 103 m tall. LVA Hauptgebäude is 123 m tall. How much taller is the LVAH?

The Kölntriangle is 103.2 m tall. LVA Hauptgebäude is 123 m tall. How much taller is the LVAH?

\square
The Kölntriangle has 29 floors. LVA Hauptgebäude has 26 floors. How many more floors does the Kölntriangle have?

Siblings, Cindy, Kate and Charlie save $£ 50$ for a trip to the cinema. Cindy has $£ 5$ more than Kate. Charlie has $£ 10$ more than Cindy. How much does each child contribute to the kitty?

\%
Integrative

Reconstitutive

Transformative

Troublesome

All rights reserved. Copyright La Salle Education Ltd. - completemaths.com - No reproduction without permission - 'Complete Mathematics' and its logo are Trademarks of La Salle Education Ltd.

Threshold Concepts

In "Thinking Deeply about Primary Mathematics" we explore threshold concepts in the primary mathematics classroom. With a hierarchical subject such as mathematics it is extremely difficult to pin down precise threshold concepts, which is why I was reticent to commit a list to print. Instead, what follows is a fluid list comprised of those concepts and ideas which our pupils will find particularly difficult to navigate and which will demand some serious consideration on our part.

- The principles of counting (stable order, 1:1 correspondence, cardinality, order irrelevance, abstract principle)
- Unitising
- Equality/equivalence
- Moving from cumbersome strategies to automatic recall of number facts
- The field axioms (laws of arithmetic)

Preparation Pre-empting pupils will be ready for challenge and choosing tasks based on criteria you have identified as challenging.	Improvisation Combining information received with knowledge of the curriculum sequence to push pupils on further or deeper.	Generalisation Giving pupils the opportunity for investigation, conjecture, testing, refinement and proof with a focus on important mathematical truths.
		What does this tell me? What are my options?
	Internal analysis	What are my options?
	ormation Receiv	

Making Mathematical Generalisations

Making Conjectures

$$
\begin{aligned}
& 1+2+3=6 \\
& 2+3+4=9 \\
& 3+5+7=15
\end{aligned}
$$

"If I find the sum of any 3 numbers the total will be a multiple of 3 .'

Providing Support for Mathematical Claims

Providing Non-Proof Arguments

\[\)| $2+3+4=9$ |
| :---: |
| $5+6+7=18$ |
| $11+12+13=36$ |
| $121+122+123=366 \quad 366$ |
| $514+515+516=1545$ |
| $\frac{1545}{3}=515$ |

\]

"The sum of 3 consecutive numbers is a
multiple of $3 . "$

$$
\begin{aligned}
& \text { Providing Proofs } \\
& \text { "Any } 3 \text { consecutive integers can be described as } n, n+1 \text { and } n+2 \text { " } \\
& \text { "The additional units can be redistributed to make } 3 \text { equal groups." } \\
& \text { "Therefore, the sum of } 3 \text { consecutive integers is always a multiple of 3." }
\end{aligned}
$$

Providing Support for Mathematical Claims

Must convince the learner that the misconception is erroneous	Address the misconception head on	Misconceptions will never go away, we must tuild stronger, accurate schema over the top	Be aware of common misconceptions in advance
404			

$$
\begin{array}{ll}
82+58 & 97+34 \\
45+67 & 30+28
\end{array}
$$

Rearrange these number sentences into formal written columns.

Tick the calculations which involve regrouping.

Match the calculations to their physical/pictorial representations

82
$+\quad 58$

Calculate the sum of these pairs of numbers

My Turn

Our Turn

$$
\begin{aligned}
& 342-20 \\
& { }^{(1)} 300+42 \\
& \text { (22 }^{4} 42-20=22 \\
& { }^{3} 300+22=322 \\
& \hline
\end{aligned}
$$

242-20

Your Turn

$$
442-20
$$

342-20
442-20

372-20

458-30

763-40

Paired worked examples

Procedural worked example

Pre-step one: (question selection)

Step one:

Step two:

'Using what you know about the area of rectangles, find the area of this triangle.'

Reverse phased worked example

Calculate the area of the blue triangle. 2

Calculate the area of the blue triangle.

Calculate the area of the blue triangle.

Reverse phased worked example

$$
\begin{aligned}
& \text { a. } 325 \\
& \text { b. } 335 \\
& \begin{array}{r}
+192 \\
\hline 17
\end{array} \\
& \begin{array}{r}
+192 \\
\hline 7
\end{array} \\
& 1 \\
& \text { c. } 325 \\
& \text { d. } 335 \\
& \begin{array}{r}
+194 \\
\hline 9
\end{array} \\
& +194
\end{aligned}
$$

Problem worked examples

Jack buys 6 packs of Euro 2021 football stickers. Each precious pack has 8 stickers with the images of famous football players. How many stickers does Jack buy altogether?

My Turn

Our Turn

Jack buys 6 packs of Erro202l football stickers Each precious packhas8 stickers with the images of famous football players Howmany stickers does Jack buy altogether?

Jack buys 4 packs of Erro 2021 football stickers Each precious packhas8 stickers with the images of famous football players Howmary stickers does Jack buy altogether?

Thinking Deeply about Primary Mathematics

kieran.mackle@completemaths.com
@Kieran_M_Ed

