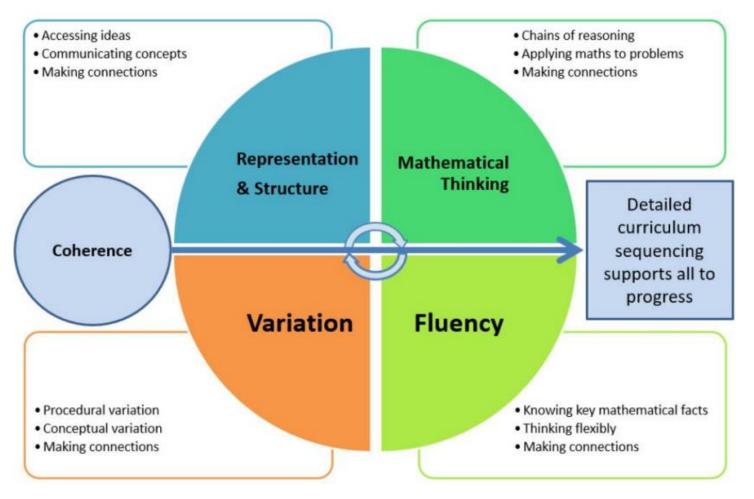
Embedding Elements of TfM in post-16 Maths

Vicky Lally & Adam Creen

Aims


- Through discussion, share simple ideas that bring the brief of Teaching for Mastery into the post-16 environment
- Use a variety of contexts to show these ideas are applicable to both Core Maths & A Level Maths, whether your school actively embraces TfM or not

• Vicky and Adam are A Level teachers at SJB and Salesian respectively

The 5 Big Ideas

Sequences (through the eyes of Core Maths)

Note: we have delivered the Edexcel "Maths in Context" Level 3 course, where – along with all Level 3 courses – the emphasis is on the in "context"

To sow an initial seed of "thinking" a task can enable students to actively think about two standard sequences in mathematics (the arithmetic and geometric sequence) without mentioning them explicitly.

The Stimulus

- Note this task I first met in 1993
- It has been adapted to reach as many parts of the specification as possible (APs, GPs, percentages, spreadsheets)
- Importantly, there is a real-life application to engage students

Dear Bob, Now that I am getting on (70 today) I want to give you some of my money, I shall give you a sum each year, starting now. You can choose which of the following schemes you would like me to use.

a) £10 now, then £10 more each year than the previous year.
b) £100 now, then £10 less each year than the previous year.
c) £1 now, then twice as much each year than the previous year.
d) £200 now, then 10% less each year than the previous year.

Of course these schemes will only operate while I am alive. I look forward to hearing which scheme you choose and why! Best wishes, Aunt Lucy.

What discussion can we get out of this:

	А	В	С	D	E	F	G	н	1	J
1	Year	Age 70	Scheme A	Total A	Scheme B	Total B	Scheme C	Total C	Scheme 4	Total 4
2	1	70	10	10	100	100	1	1	200	200
3	2	71	20	30	90	190	2	3	180	380
4	3	72	30	60	80	270	4	7	162	542
5	4	73	40	100	70	340	8	15	145.8	687.8
6	5	74	50	150	60	400	16	31	131.22	819.02
7	6	75	60	210	50	450	32	63	118.098	937.118
8	7	76	70	280	40	490	64	127	106.2882	1043.4062
9	8	77	80	360	30	520	128	255	95.65938	1139.06558
10	9	78	90	450	20	540	256	511	86.093442	1225.15902
11	10	79	100	550	10	550	512	1023	77.4840978	1302.64312
12	11	80	110	660	0	550	1024	2047	69.735688	1372.37881
13	12	81	120	780	0	550	2048	4095	62.7621192	1435.14093
14	13	82	130	910	0	550	4096	8191	56.4859073	1491.62683
15	14	83	140	1050	0	550	8192	16383	50.8373166	1542.46415
16	15	84	150	1200	0	550	16384	32767	45.7535849	1588.21774
17	16	85	160	1360	0	550	32768	65535	41.1782264	1629.39596
18	17	86	170	1530	0	550	65536	131071	37.0604038	1666.45637
19	18	87	180	1710	0	550	131072	262143	33.3543634	1699.81073
20	19	88	190	1900	0	550	262144	524287	30.0189271	1729.82966
21	20	89	200	2100	0	550	524288	1048575	27.0170344	1756.84669
22	21	90	210	2310	0	550	1048576	2097151	24.3153309	1781.16202
23	22	91	220	2530	0	550	2097152	4194303	21.8837978	1803.04582
24	23	92	230	2760	0	550	4194304	8388607	19.695418	1822.74124
25	24	93	240	3000	0	550	8388608	16777215	17.7258762	1840.46711
26	25	94	250	3250	0	550	16777216	33554431	15.9532886	1856.4204
27	26	95	260	3510	0	550	33554432	67108863	14.3579598	1870.77836
28	27	96	270	3780	0	550	67108864	134217727	12.9221638	1883.70053
29	28	97	280	4060	0	550	134217728	268435455	11.6299474	1895.33047
30	29	98	290	4350	0	550	268435456	536870911	10.4669527	1905.79743
31	30	99	300	4650	0	550	536870912	1073741823	9.42025739	1915.21768
32	31	100	310	4960	0	550	1073741824	2147483647	8.47823166	1923.69592

Formulae in spreadsheets Increasing and Decreasing **Arithmetic Sequences** Increasing and Decreasing **Geometric Sequences** Summation of a Sequence Percentage Reduction **Recurrence Relationship** A question with "no right answer" – how did students deal with this?

(Link with the King's Chessboard)

What about A Level Maths?

- Tempting to just teach "the formulas"
- Two for students to learn, two given in the formula booklet
- What's at the heart of the formula?

- Harry the Hare
- We need them to have "structural understanding"

Justifying the summation

- writing the sum from 1 to 100
- reversing the sum
- adding pairs of terms and seeing they are all 101
- How many pairs? But this is double the total
- So we get

$$\frac{100}{2}(101) = 5050$$

Linking topics in A Level

- Sigma notation
- But also ... how many terms from 10 to 20?

 $\sum_{10}^{20} r$

• Is this the same problem as Binomial inequalities?

 $P(10 \le X \le 20)$

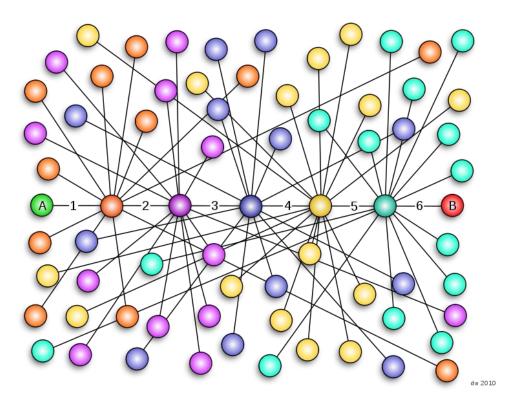
To summarise

• At A Level we want

structural understanding

the nth term to be "obvious"

AND learning the formulas and proofs (of course!)


Standard Deviation

- This is not always the most intuitive idea for a student, so whether a Core Maths mathematician or A-level mathematician, it is important students get a feel as to:
 - why we need measure of dispersion
 - the "feel" of dispersion (which then supports Range & IQR)
 - where the formula originated from!

The Stimulus

Six degrees of separation is the theory

that everyone is six or fewer steps away, by way of introduction, from any other person in the world, so that a chain of "a friend of a friend" statements can be made to connect any two people in a maximum of six steps.

In 1993 Will Smith starred in a film "Six degrees of separation"

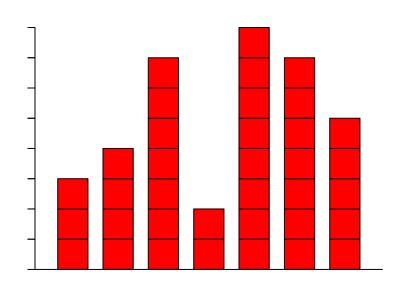
Students appreciating dispersion

A new student is going to join Mrs Skelton's psychology class and our maths class. Each student in the two classes finds out how many connections there are between themselves and the new student:

Class 1					
Student	Number of connections, x				
Katrina	1				
Abdul	1				
Erica	3				
Heidi	1				
Maxine	2				
Reatha	4				
Garrett	3				
Diane	8				
Jacinda	1				
Jessica	2				
Nickolas	3				
Christine	10				
Renee	2				
Yasuko	3				
Justin	6				
Marguerite	1				

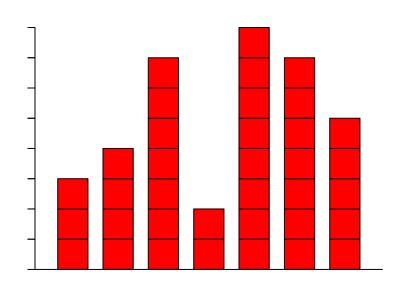
Class 2					
Student	Number of connections, x				
Jean	6				
Paula	4				
Francis	2				
Gustavo	4				
Laurence	3				
Naomi	2				
Richard	2				
Alpita	5				
Christopher	3				
Sarah	4				
Tom	2				
Tyrone	3				
Claire	4				
Laurence	2				
Penny	3				
Malena	2				

- 1: This means they know the person
- 2: This means one of their friends knows the person


Find the mean number of connections this student has with Class 1 and Class 2, and write a conclusion.

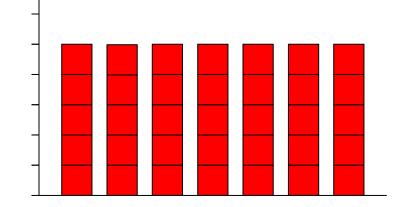
Here is a set of data values: Find the mean

Does it feel right?

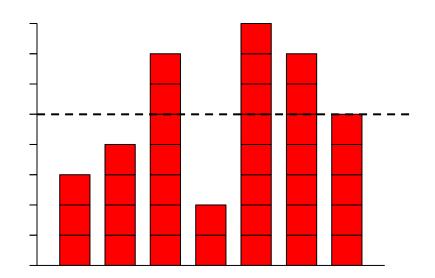


Here is a set of data values: Find the mean

Does it feel right?



Here is a set of data values: Find the mean Does it feel right?


This can then lead to the development of the formulae for standard deviation

Here is a set of data values: Find the mean Does it feel right?

Using Desmos to "feel" dispersion

Desmos is great for statistics.

A dotplot is a simple graph where students can "see" each individual data value

To enter a list of data, simply:

L = [enter data separated by columns] note: square brackets dotplot(L) note: round brackets

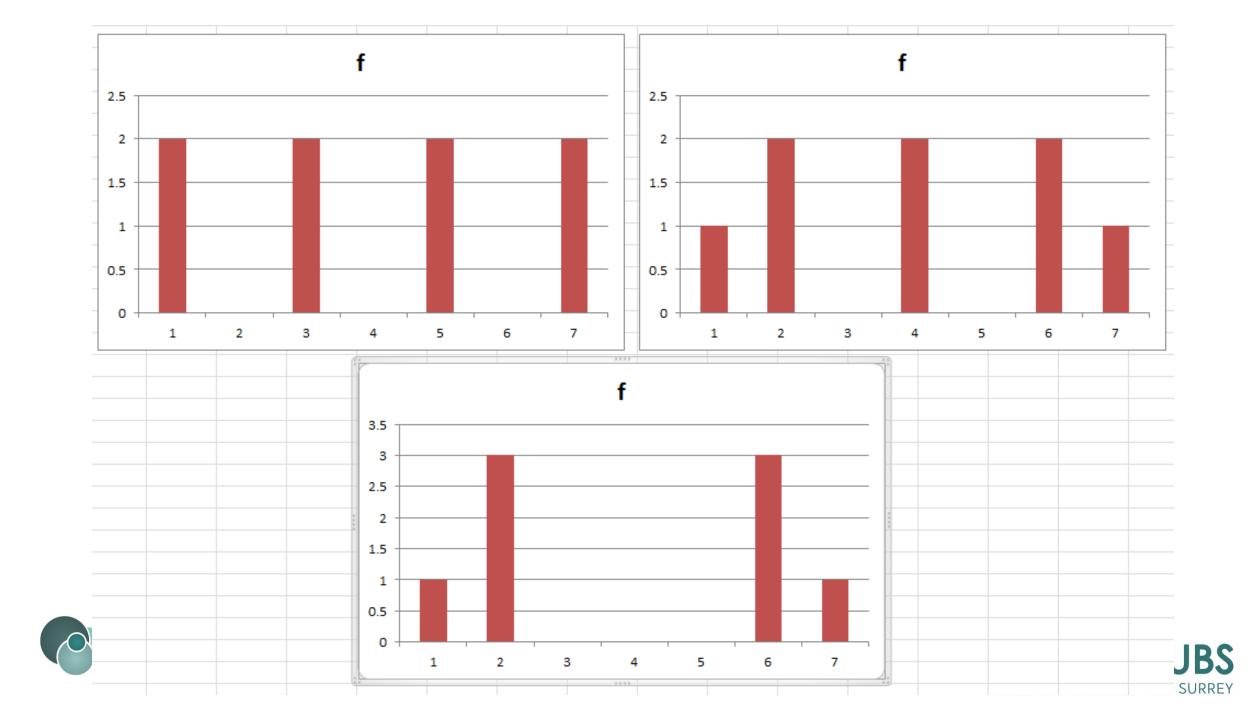
Students could tackle coding, even though not part of this course

Introducing Standard Deviation at A Level

3 sets of data

1, 1, 3, 3, 5, 5, 7, 7 1, 2, 2, 4, 4, 6, 6, 7 1, 2, 2, 2, 6, 6, 6, 7

What are their means? Their medians? Their ranges? Their inter-quartile ranges?


3 sets of data

1 1 2 3 3 4 5 5 6 7 7 1 2 2 4 4 6 6 6 7 1 2 2 2 4 4 6 6 6 7 1 2 2 2 4 6 6 6 7

means and medians all 4 ranges all 6 inter-quartile ranges all 4 so how do we distinguish them?

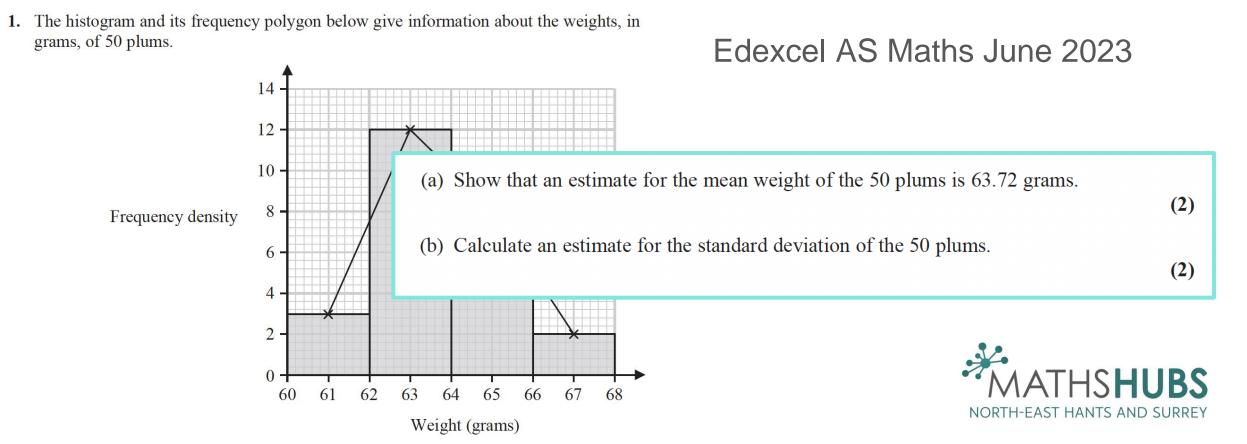
Inventing a measure of spread

- We could add up all the positive and negative distances from the mean
 - but this would add up to zero
- We could add up the magnitudes/moduli of the distances from the mean
 - and this would work, but not really reflect the effect of the furthest distances
- We add up the squares of the distances from the mean and then average them

standard deviation = the spread of the data using every data value measured in the same units as the data

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \bar{x}^2}$$

MSMSM = the mean of the squares


minus the square of the mean

Teaching for understanding

- Giving students a formula is not enough
- How do we ensure they understand the concept?

Teaching for understanding

Later it was discovered that the scales used to weigh the plums were broken.

Each plum actually weighs 5 grams less than originally thought.

(c) State the effect this will have on the estimate of the standard deviation in part (b). Give a reason for your answer.

(1)

Variation – students making predictions

- What if we increase all the values by 5? (link to coding)
- What if we double all the values?
- What if we do both?
- What if we remove the highest value (an outlier)?
- What if we add another value equal to the lowest?

Variation – more interesting

- What if we add a value equal to the mean?
- How big does an outlier have to be to have an effect?

Variation in using the formula

- Data set
- Summary statistics
- Summary statistics and an additional value so they think what changes, what has stayed the same
- Given standard deviation, mean, number of values, can they find $\sum x^2$?

Variation in using the formula

• Given some working, can they spot the error? Can you?

Shoe Size, x	Frequency, f		
5	7	7 × 5 = 35	7 ² × 5 = 245
6	9	9 × 6 = 54	9 ² × 6 = 486
7	10	10 × 7 = 70	$10^2 \times 7 = 700$
8	4	4 × 8 = 32	4 ² × 8 = 128
	h = 30	∑X = 191	∑X² = 1559

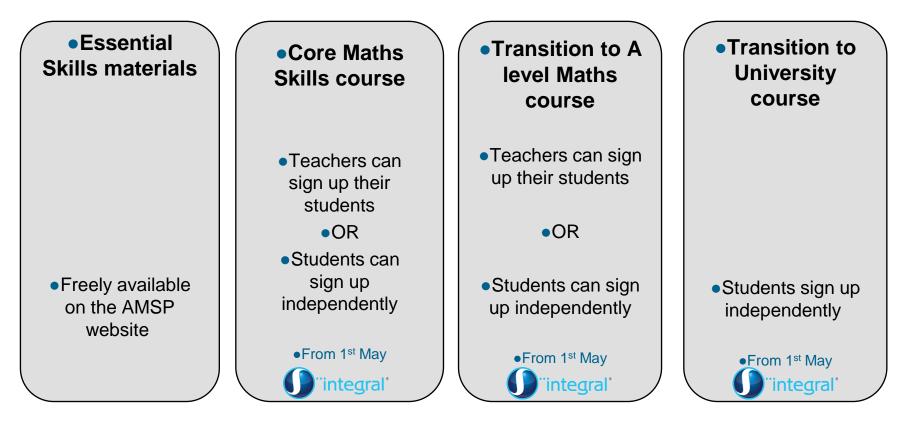
• All these force thinking and discussion, as opposed to repetitive calculation


And now some updates...

- The AMSP is a government-funded initiative, managed by <u>MEI</u>, providing national support for teachers and students in all state-funded schools and colleges in England.
- It aims to increase participation in AS/A level Mathematics and Further Mathematics, and Core Maths, and improve the teaching of these qualifications.
- Additional support is given to those in priority areas to boost social mobility so that, whatever their gender, background or location, students can choose their best maths pathway post-16, and have access to high quality maths teaching.

AMSP Local Area Coordinator

Catherine.Joyce@amsp.org.uk


Summer Term Updates

- AMSP Transition Courses for Students
- SUMS online magazine for Year 12 and Year 13
- Extended PD Courses now open for enrolment
- Subject Knowledge Live and KS5 Coordinator open for enrolment soon
- On Demand Professional Development (ODPD)
- Sign up to Stay Informed

AMSP Transition Courses

https://amsp.org.uk/resource/transition

Steps to University Maths (SUMS):

- SUMS a new web-magazine for your Year 12 and Year 13 students
- Online magazine aimed at Y12 and Y13
- Different sections including:
 - Where can maths take you? Interviews with maths graduates.
 - **Preparing for university** advice on what you should/could be doing now.
 - **Studying at university** the lowdown from students and lecturers about what it's like to study maths.
 - **Do some maths** puzzles, problems and new maths topics, plus the chance to get your work published in future issues.
- New issues are published on the second Monday of every month hosted on Integral.
- https://amsp.org.uk/sums-steps-to-university-for-mathematical-students/

Extended PD Courses

Are you teaching something new?

Do you have a colleague who needs in-depth training?

AMSP extended PD courses offer comprehensive support over several months and include access to dedicated course resources.

- Teaching A level Mathematics (TAM)
- Teaching Further Mathematics (TFM1 & TFM2)
- Teaching Mechanics (TM1 & TM2)
- Teaching Statistics (TS1 & TS2)
- Teaching Discrete Mathematics (TD)

Extended courses: comprehensive support

 Continuous support of up to two years

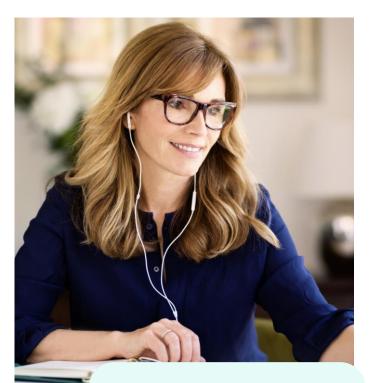
• Dedicated course tutors

Peer support

•Online sessions and/or study days

•Course-specific teaching resources

Assignment
 with feedback


Subject Knowledge Live and KS5Co

Overview

- One term, weekly sessions, 90 minutes each.
- Synchronous sessions modelling subject knowledge delivery including use of technology
- A year of access to coursespecific teacher resources and recordings of the live sessions
- Free to teachers in state-funded schools in England

Available courses

 Register of interest if nothing currently available

- Higher GCSE topics through mathematical thinking
- Core Maths common topics
- AS Maths: Pure AbsoluteBeginners
 - AS Maths: Pure Improvers
 - A level Maths: Pure Year 2
 - AS & A level Maths: Statistics
 - AS & A level Maths: Mechanics
- KS5 Coordinators Development

On Demand Professional Development

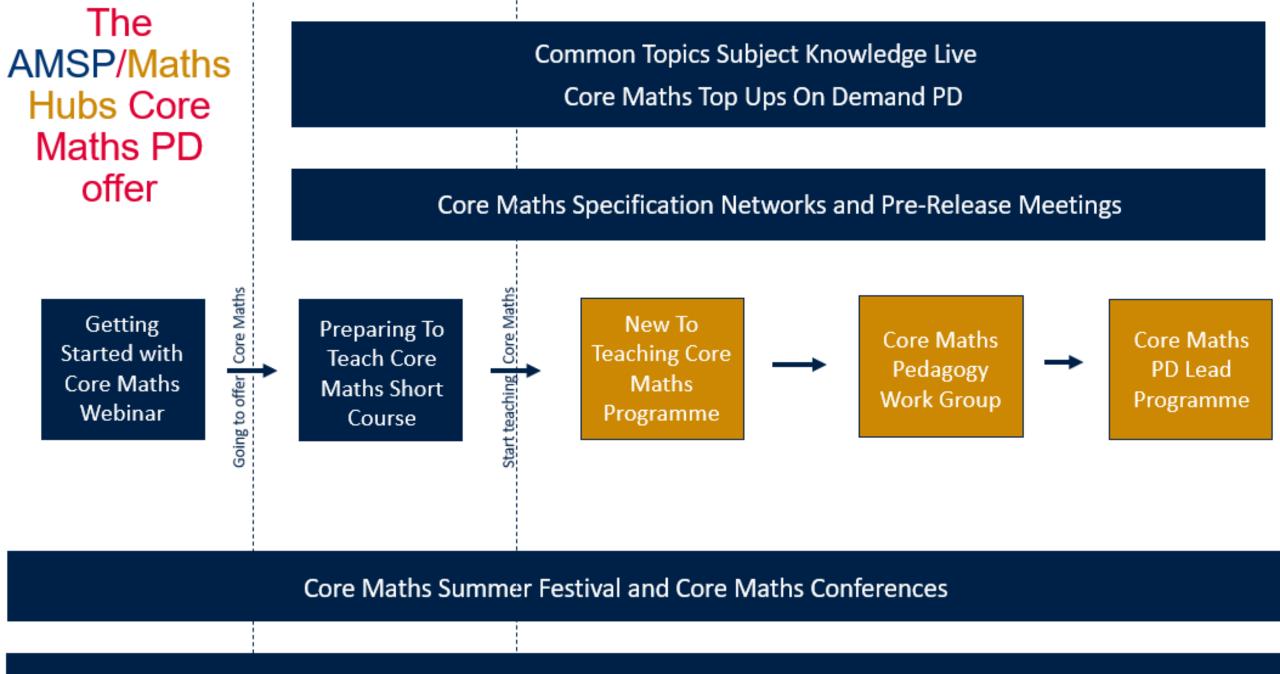
Overview

- Self-paced courses, accessed online
- Access lasts for a full year, with option to extend
- Videos, resources and support via the forums
- Free to teachers in state-funded schools or colleges in England

ODPD available courses

A level Maths	A level Further Maths		Core Maths	University admissions tests		Technology	
	GeoGebra	a in	the Maths cla	ssroom 🔀			
Desmos in the Maths Classroom							
Numerical Methods for A level Mathematics	AS and A level Further Maths: compulsory Pure top-ups			Preparing your students for STEP		GeoGebra in the GCSE Mathematics classroom	
A level Maths: Statistics top-ups	A level Further Maths: Discrete, Decision and Modelling with Algorithms	\nearrow	Core Maths top-ups	Preparing your students for the MAT and the TMUA			
Imperial mA*ths project teacher support	Imperial Further mA*ths project teacher support	$\overleftarrow{}$					

Subscribe to receive our latest news


We'd love to keep you informed about our upcoming professional development courses, student enrichment events, free resources, and more!

You can subscribe to our mailing list on the AMSP website: <u>amsp.org.uk/subscribe</u>

NEHS Maths Hub '23-'24 – The Offer

	Primary	Secondary	Post-16	SEND	
Teaching for Mastery Work Groups (school- wide development)	 Mastering Number at KS2 Mastering Number at Reception and KS1 Years 5-8 Continuity Oracy Readiness Development Embedding Sustaining (various strands and foci) 	 Years 5-8 Continuity Developing Fluency at KS3 Development Embedding Year Support Sustaining (various strands and foci) 	 Supporting Low Attainers to Achieve a L2 Qualification in Mathematics Developing Core Maths Pedagogy Developing A-Level Pedagogy 	Developing Teaching for Mastery	
Specialist Knowledge for Teaching Mathematics Programmes (individual practitioner development)	 Early years Teachers Primary Teachers – Number Primary Teachers – Spatial Primary ECTs Phase 1 Primary ECTs Phase 2 	 Secondary ECTs Phase 1 Secondary ECTs Phase 2 Secondary Non- Specialists Teachers Secondary TAs 	• Core Maths Teachers		
Professional Learning Communities (collaboration for continuous development)	 Mastering Number Embedding the Impact Community Strengthening Partnerships with ITT Providers Community Termly online network meetings 	 Maths Subject Leaders Community Maths MAT Leaders Community Strengthening Partnerships with ITT Providers Community Termly online network meetings 	 Termly online network meetings AMSP network meetings 	Termly online network meetings	
Local Leaders of Mathematics Education Professional Development Programmes <i>(individual practitioner leadership development)</i>	 Primary Mastery Specialist Programme NCETM Professional Development Lead Programme NCETM School Development Lead Programme 	 Secondary Mastery Specialists Programme NCETM Professional Development Lead Programme NCETM School Development Lead Programme 	 Post-16 GCSE/FS1 Mastery Specialist Programme NCETM Professional Development Lead Programme NCETM School Development Lead Programme 	 NCETM PD Lead Programme NCETM SD Lead Programme 	

Core Maths Specialist Lead bespoke support

Post 16 AMSP/Maths Hub offer for 2023-24 – South

Developing A level Pedagogy Work Group (15 hours of PD) Blended Starting from: October 2023

Cross Phase- Supporting Low Attainers to Achieve a L2 Qualification in Mathematics Work Group (3 full days of workshops) New to Teaching Core Maths Programme (15 hours of PD) Online Starting from: October 2023

Developing Core Maths Pedagogy Work Group (15 hours of PD) Blended or Online Starting from: November 2023 Tell us more about you and your Post 16 interests and needs. Complete our survey.

Maths Hub Post 16 Lead Gill Leahy g.leahy@sjb.surrey.sch.uk

AMSP Area Coordinator Catherine Joyce <u>Catherine.joyce@amsp.org.uk</u>

Thank you

